Abnormal Lactate Levels Affect Motor Performance in Myotonic Dystrophy Type 1
نویسندگان
چکیده
Myotonic Dystrophy type 1 (DM1) is a dominantly inherited disease comprehending multiple features. Fatigue and exhaustion during exercise often represent significant factors able to negatively influence their compliance to rehabilitation programs. Mitochondrial abnormalities and a significant increase in oxidative markers, previously reported, suggest the hypothesis of a mitochondrial functional impairment. The study aims at evaluating oxidative metabolism efficiency in 18 DM1 patients and in 15 healthy subjects, through analysis of lactate levels at rest and after an incremental exercise test. The exercise protocol consisted of a submaximal incremental exercise performed on an electronically calibrated treadmill, maintained in predominantly aerobic condition. Lactate levels were assessed at rest and at 5, 10 and 30 minutes after the end of the exercise. The results showed early exercise-related fatigue in DM1 patients, as they performed a mean number of 9 steps, while controls completed the whole exercise. Moreover, while resting values of lactate were comparable between the patients and the control group (p=0.69), after the exercise protocol, dystrophic subjects reached higher values of lactate, at any recovery time (p<0,05). These observations suggest an early activation of anaerobic metabolism, thus evidencing an alteration in oxidative metabolism of such dystrophic patients. As far as intense aerobic training could be performed in DM1 patients, in order to improve maximal muscle oxidative capacity and blood lactate removal ability, then, this safe and validate method could be used to evaluate muscle oxidative metabolism and provide an efficient help on rehabilitation programs to be prescribed in such patients.
منابع مشابه
Toward a more personalized motor function rehabilitation in Myotonic dystrophy type 1: The role of neuroplasticity
Myotonic dystrophy type 1 (DM1) is the most prevalent adult muscular dystrophy, often accompanied by impairments in attention, memory, visuospatial and executive functions. Given that DM1 is a multi-system disorder, it requires a multi-disciplinary approach, including effective rehabilitation programs, focusing on the central nervous system neuroplasticity, in order to develop patient-tailored ...
متن کاملLaboratory abnormalities in patients with myotonic dystrophy type 2.
BACKGROUND Myotonic dystrophy type 2 (DM2) is a recently discovered adult muscular dystrophy. Similar to DM1, this disease causes progressive debilitating weakness, clinical myotonia, and early cataracts and is thought to cause widespread physiologic dysfunction of multiple organ systems. OBJECTIVE To analyze and compile the laboratory abnormalities of patients with DM2. DESIGN Baseline DM2...
متن کاملDecreased hypocretin-1 (Orexin-A) levels in the cerebrospinal fluid of patients with myotonic dystrophy and excessive daytime sleepiness.
STUDY OBJECTIVE Myotonic dystrophy type 1 is a multisystem disorder with myotonia, muscle weakness, cataracts, endocrine dysfunction, and intellectual impairment. This disorder is caused by a CTG triplet expansion in the 3' untranslated region of the DMPK gene on 19q13. Myotonic dystrophy type 1 is frequently associated with excessive daytime sleepiness, sharing with narcolepsy a short sleep la...
متن کاملThe brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease
Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T(1)/T(2)/diffusion-weighted). Voxel-based morphomet...
متن کاملGenotype–Phenotype Correlations in Iranian Myotonic Dystrophy Type I Patients
Objectives: Myotonic Dystrophy type I (DM1) is a dominantly inherited disorder with a multisystemic pattern affecting skeletal muscle, heart, eye, endocrine and central nervous system. DM1 is associated with the expansion and instability of CTG repeat in the 3chr('39') untranslated region of the myotonic dystrophy protein kinase (DMPK) gene located on chromosome 19q13.3. The aim of this study w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 24 شماره
صفحات -
تاریخ انتشار 2014